

Synthesis of 2α -substituted-14-*epi*-previtamin D₃ and its genomic activity

Daisuke Sawada ^a, Tomoyuki Katayama ^{a,†}, Yuya Tsukuda ^a, Nozomi Saito ^{a,†}, Masashi Takano ^a, Hiroshi Saito ^b, Ken-ichiro Takagi ^b, Eiji Ochiai ^b, Seiichi Ishizuka ^b, Kazuya Takenouchi ^b, Atsushi Kittaka ^{a,*}

^a Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 229-0195, Japan

^b Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Tokyo 191-8512, Japan

ARTICLE INFO

Article history:

Received 1 July 2009

Revised 23 July 2009

Accepted 24 July 2009

Available online 28 July 2009

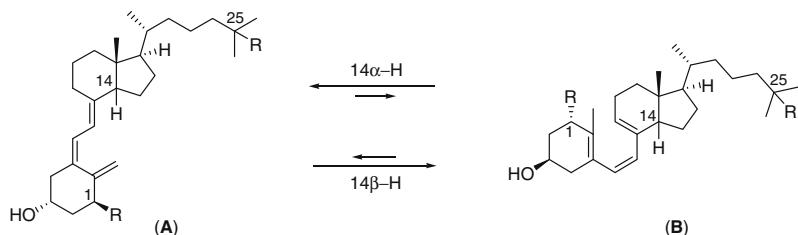
ABSTRACT

We synthesized and isolated 2α -substituted analogs of 14-*epi*-previtamin D₃ after thermal isomerization at 80 °C for the first time. The VDR binding affinity and transactivation activity of osteocalcin promoter in HOS cells were evaluated, and the 2α -methyl-substituted analog was found to have greater genomic activity than 14-*epi*-previtamin D₃.

© 2009 Elsevier Ltd. All rights reserved.

Keywords:

Vitamin D₃


14-Epi-previtamin D₃

Osteocalcin

Vitamin D receptor

Vitamin D₃ is present in thermal equilibrium with previtamin D₃ via [1,7]-sigmatropic rearrangement. In this equilibrium, the 6-*s-trans* isomer, that is, the vitamin D form (**A**), is more stable and major than the 6-*cis* isomer of the previtamin D form (**B**) (Scheme 1). Active vitamin D₃, 1*α*,25(OH)₂D₃ (**1**), which is the biologically most active metabolite of vitamin D₃, contains 5–10% of its previtamin D form, 1*α*,25(OH)₂preD₃ (**pre-1**) at 37 °C in similar equilibrium.¹ Most scientists have focused on the analogs of the major vitamin D form for therapeutic evaluation rather than the

previtamin D form, because previtamin D₃ is easily transformed to vitamin D₃ through thermal equilibrium and is almost impossible to isolate in the pure form.¹ While **1** is a ligand of the nucleic receptor (vitamin D receptor, VDR), regulates gene transcription, and exhibits various biological responses as a hormone,² **pre-1** is believed to be a weak ligand of VDR and a poor activator of the above genomic actions;³ however, **pre-1** has been studied as a ligand of a putative membrane vitamin D receptor for a long time,⁴ and it is well-known that **pre-1** causes various biological rapid

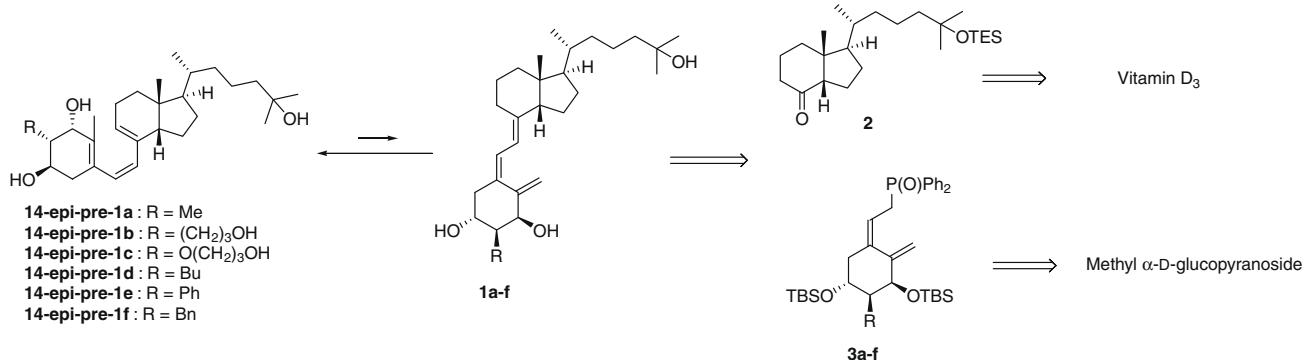
vitamin D₃: R = H (14*α*-H)

1: R = OH, 1*α*,25(OH)₂D₃ (14*α*-H, 1*α*,25-dihydroxyvitamin D₃)

14-*epi*-1: R = OH, 14-*epi*-1*α*,25(OH)₂D₃ (14*β*-H)

previtamin D₃: R = H (14*α*-H)

pre-1: R = OH, 1*α*,25(OH)₂preD₃ (14*α*-H)


14-*epi*-pre-1: R = OH, 14-*epi*-1*α*,25(OH)₂preD₃ (14*β*-H)

Scheme 1. Equilibrium between vitamin D₃ and previtamin D₃.

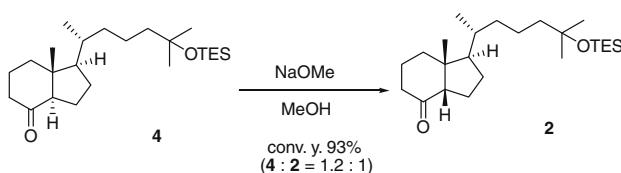
* Corresponding author. Tel./fax: +81 42 685 3713.

E-mail address: akittaka@pharm.teikyo-u.ac.jp (A. Kittaka).

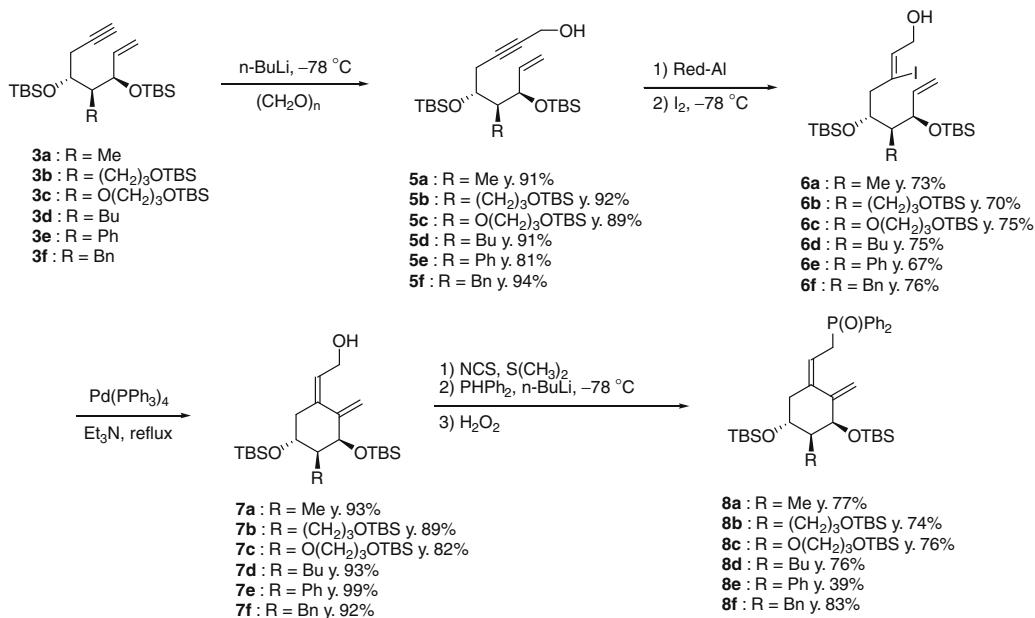
† Present address: Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.

Scheme 2. Retrosynthetic analysis of 2 α -substituted 14-epi-1 α ,25(OH)₂preD₃.

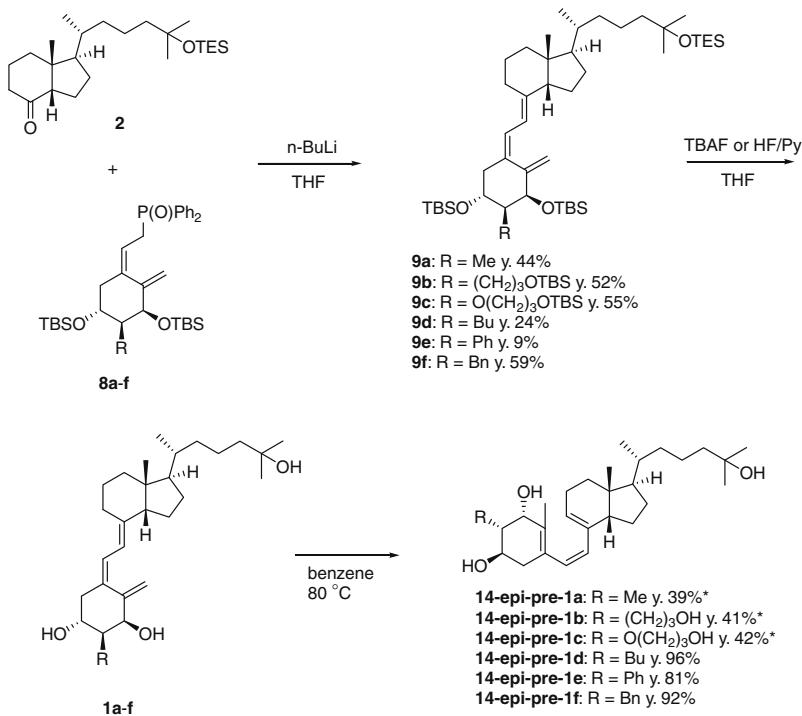
responses, for example, stimulation of intestinal Ca^{2+} transport (transcaltachia),⁵ activation of PKC⁶ and MAP⁷ kinases, and so on, which are called non-genomic actions.


Okamura et al. reported that the thermal equilibrium ratio between vitamin D form (**A**) and previtamin D form (**B**) at 80 °C was reversed by epimerizing the CD-ring bridgehead hydrogen of C14, that is, 14-epi-1 α ,25(OH)₂preD₃ (**14-epi-pre-1**) was major and dominant to 14-epi-1 α ,25(OH)₂D₃ (**14-epi-1**).⁸ Since it requires a high temperature (80 °C) to reach thermal equilibrium, **14-epi-pre-1** is expected to be isolated stable at room temperature. Using this reverse equilibrium, we focused on the synthesis of the **14-epi-pre-1** analogs with A-ring modification, and aimed to identify the more detailed biological properties and potential as therapeutic agents of the previtamin D₃ skeleton.

14-epi-pre-1 could be prepared from **14-epi-1** by thermal isomerization, so we planed to synthesize **14-epi-1** analogs as tem-


porary first targets. This strategy would help us to understand the equilibrium between vitamin D₃ and previtamin D₃. The **14-epi-1** analogs were divided into two fragments, which were CD-ring and A-ring fragments (Scheme 2). The CD-ring fragment could be obtained by epimerization at H14 in Grundmann's ketone derivative, which was derived from vitamin D₃.⁹ The A-ring fragment could be synthesized from methyl α -D-glucoside, and we could introduce various alkyl groups at the 2 α -position as we reported previously.¹⁰ We found that 2 α -alkyl and 2 α -(ω -hydroxyalkyl) substitution afforded great improvements VDR binding affinity and the subsequent genomic actions.¹¹ We therefore decided to prepare analogs with 2 α -substitutions (**14-epi-pre-1a~1f**) in this Letter.

The CD-ring fragment (**2**) was synthesized from the known ketone of TES-protected 25-hydroxy Grundmann's ketone (**4**).⁹ According to the literature, epimerization of H14 was successfully conducted by NaOMe with recovery of the starting material (Scheme 3).⁸


A-ring fragments (**8a~f**) were prepared from the known enynes **3a~f** (Scheme 4),^{10a~d} which reacted with *n*-BuLi and then $(\text{CH}_2\text{O})_n$ to give alcohols **5a~f** in good to excellent yields. Then, hydroalumination and subsequent iodination of the alkyne gave the vinyl iodides **6a~f**. Next, cyclization by Heck reaction proceeded smoothly to afford a six-membered A-ring,¹² whose hydroxyls were easily transformed into phosphine oxides in three

Scheme 3. Synthesis of the CD-ring fragment.

Scheme 4. Synthesis of the A-ring fragments.

*Deprotection was conducted by HF/Py.

Scheme 5. Coupling reaction and synthesis of 2α-substituted 14-epi-1α,25(OH)₂preD₃.

steps to give **8a-f**, respectively.⁸ As above, we were able to prepare A-ring fragments in good overall yield.

Since both fragments were available, we tried the coupling reaction under basic conditions using *n*-BuLi (Scheme 5).⁸ Small excess amounts of the A-ring fragment worked well and we obtained the coupled products **9a-f**, although some were obtained in low yield. The silyl protected **14-epi-1** analogs (**9a-f**) tend not to lead to isomerization to their previtamin D form, probably because TBS groups at the A-ring should show steric hindrance to reaching the transition state of the [1,7]-sigmatropic hydrogen shift existing between the vitamin D form and previtamin D form. Then, all silyl groups in **9a-f** were removed in one step with excess TBAF or HF/pyridine, and most of the deprotected compounds remained in the vitamin D form (**1a-f**), and only small amounts of the previtamin D form (**pre-1a-f**) were produced under these reaction conditions. Isomerization was therefore examined at 80 °C in benzene, and fortunately the portions of the desired **14-epi-pre-1a-f** increased, and most vitamin D forms were converted into the previtamin D form easily in less than two hours. After thermal equilibrium had been established, the ratio of the compounds was about 5/95 (vitamin D/previtamin D) based on ¹H NMR studies. Using HPLC, the mixture of both forms was separated, and pure **14-epi-pre-1a-f** were used for further biological studies.¹³

The VDR binding affinity and the osteocalcin promoter transactivation activity of the new compounds were evaluated using the chick intestinal VDR and HOS cells, respectively.¹⁴ The results are summarized in Table 1 in comparison with the natural hormone **1** and **14-epi-pre-1**, which was synthesized in a similar manner in our laboratory. The new compounds showed lower activity than the natural hormone **1**; however, some showed higher activity than 14-epi-1α,25(OH)₂preD₃ (**14-epi-pre-1**). In particular, **14-epi-pre-1a**, the 2α-methyl substituted analog indicated a remarkable increase in VDR binding affinity and transactivation activity. It is worth noting that **14-epi-pre-1** analogs gain genomic activity.

Table 1

Relative binding affinity for chick intestinal VDR and osteocalcin promoter transactivation activity in HOS cells of 2α-substituted 14-epi-1α,25(OH)₂preD₃.¹⁴

Compound	VDR ^a	Osteocalcin transactivation activity (ED ₅₀ (nM))
1	100	0.03
14-epi-pre-1	0.5	0.46
14-epi-pre-1a	8.4	0.12
14-epi-pre-1b	1.4	0.69
14-epi-pre-1c	0.17	0.95
14-epi-pre-1d	0.27	5.77
14-epi-pre-1e	<0.03	0.88
14-epi-pre-1f	0.03	30.2

and 2α-substitution on the A-ring seems to have great effects on the biological actions of the previtamin D form.

In conclusion, we synthesized the 2α-substituted analogs of **14-epi-pre-1** for the first time and were able to isolate these new analogs (**14-epi-pre-1a-f**) after thermal isomerization at 80 °C. Using them, we evaluated the VDR binding affinity and transactivation activity of osteocalcin promoter in HOS cells, among which, the 2α-methyl-substituted analog (**14-epi-pre-1a**) was found to have greater genomic activity than **14-epi-pre-1**. Further studies of the action mechanisms of **14-epi-pre-1** analogs as well as studies on non-genomic activity are currently in progress in our laboratory.

Acknowledgments

We are grateful to Ms. Junko Shimode and Ms. Ayako Kawaji (Teikyo University) for the spectroscopic measurements. This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to D.S and N.S.) and by a Grant-in-Aid from the Japan Society for the Promotion of Science (to A.K.).

Supplementary data

Supplementary data (spectroscopic data of **14-epi-pre-1b~1f** and experimental details of testing binding affinity for the chick intestinal VDR and osteocalcin promoter transactivation activity) associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2009.07.112.

References and notes

1. Curtin, M. L.; Okamura, W. H. *J. Am. Chem. Soc.* **1991**, *113*, 6958.
2. (a) Vitamin D; Feldman, D., Pike, J. W., Glorieux, F. H., Eds., 2nd ed.; Elsevier Academic Press: New York, 2005. For mechanism of action, see: Section II; for target organs and tissues, see: Section IV; (b) DeLuca, H. F. *Nutri. Rev.* **2008**, *66*, S73; (c) Brown, A. J.; Slatopolsky, E. *Mol. Aspects Med.* **2008**, *29*, 433; (d) Bouillon, R.; Okamura, W. H.; Norman, A. W. *Endocr. Rev.* **1995**, *16*, 200; (e) Zhu, G. D.; Okamura, W. H. *Chem. Rev.* **1995**, *95*, 1877; (f) Ettlinger, R. A.; DeLuca, H. F. *Adv. Drug Res.* **1996**, *28*, 269.
3. (a) Chen, Y.-J.; Gao, L.-J.; Murad, I.; Verstuyf, A.; Verlinden, L.; Verboven, C.; Bouillon, R.; Viterbo, D.; Milanesio, M.; Haver, D. V.; Vandewalle, M.; De Clercq, P. J. *Org. Biomol. Chem.* **2003**, *1*, 257; (b) Verlinden, L.; Verstuyf, A.; Verboven, C.; Eelen, G.; De Ranter, C.; Gao, L.-J.; Chen, Y.-J.; Murad, I.; Choi, M.; Yamamoto, K.; Yamada, S.; Van Haver, D.; Vandewalle, M.; De Clercq, P. J.; Bouillon, R. *J. Biol. Chem.* **2003**, *278*, 35476.
4. (a) Mizwicki, M. T.; Keidel, D.; Bula, C. M.; Bishop, J. E.; Zanello, L. P.; Wurtz, J.-M.; Moras, D.; Norman, A. W. *PNAS* **2004**, *101*, 12876; (b) Nemere, I.; Dormanen, M. C.; Hammond, M. W.; Okamura, W. H.; Norman, A. W. *J. Biol. Chem.* **1994**, *269*, 23750; (c) Norman, A. W.; Okamura, W. H.; Hammond, M. W.; Bishop, J. E.; Dormanen, M. C.; Bouillon, R.; Van Baelen, H.; Ridall, A. L.; Daane, E.; Khoury, R.; Farach-Carson, M. C. *Mol. Endocrinol.* **1997**, *11*, 1518; (d) Norman, A. W. *Endocrinology* **2006**, *147*, 5542; (e) Huhtakangas, J. A.; Olivera, C. J.; Bishop, J. E.; Zanello, L. P.; Norman, A. W. *Mol. Endocrinol.* **2004**, *18*, 2660; (f) Nguyen, T. M.; Lieberherr, M.; Fritsch, J.; Guillozzo, H.; Alvarez, M. L.; Fitouri, Z.; Jehan, F.; Carabedian, M. J. *Biol. Chem.* **2004**, *279*, 7591.
5. (a) Zhou, L.-X.; Nemere, I.; Norman, A. W. *J. Bone Miner. Res.* **1992**, *7*, 457; (b) De Boland, A. R.; Norman, A. W. *Endocrinology* **1990**, *127*, 2475; (c) Nemere, I.; Yoshimoto, Y.; Norman, A. W. *Endocrinology* **1984**, *115*, 1476; (d) Norman, A. W.; Mizwicki, M. T.; Norman, D. P. G. *Nat. Rev. Drug Disc.* **2004**, *3*, 27.
6. (a) Shumitz, J. P.; Schwartz, Z.; Sylvia, V. L.; Dean, D. D.; Calderon, F.; Boyan, B. D. *J. Cell Physiol.* **1996**, *168*, 570; (b) Slater, S. J.; Kelly, M. B.; Taddeo, F. J.; Larkin, J. D.; Yeager, M. D.; McLane, J. A.; Ho, C.; Stubbs, C. D. *J. Biol. Chem.* **1995**, *270*, 6639; (c) Bissonnette, M.; Tien, X.-Y.; Niedziela, S. M.; Hartmann, S. C.; Frawley, B. P., Jr.; Roy, H. K.; Sitrin, M. D.; Perlman, R. L.; Brasitus, T. A. *Am. J. Physiol.* **1994**, *267*, G465.
7. (a) Song, X.; Bishop, J. E.; Norman, A. W. *Endocrinology* **1998**, *139*, 457; (b) De Boland, A. R.; Norman, A. W. *J. Cell. Biochem.* **1998**, *69*, 470; (c) Beno, D. W. A.; Brady, L. M.; Bissonnette, M.; Davis, B. H. *J. Biol. Chem.* **1995**, *270*, 3642.
8. Maynard, D. F.; Trankle, W. G.; Norman, A. W.; Okamura, W. H. *J. Med. Chem.* **1994**, *37*, 2387.
9. (a) Inhoffen, H. H.; Quinkert, G.; Siegismund, S.; Kampe, D.; Domagk, G. *F. Chem. Ber.* **1957**, *90*, 664; (b) Kiegel, J.; Wovkulich, P. M.; Uskokovic, M. R. *Tetrahedron Lett.* **1991**, *32*, 6057.
10. (a) Kittaka, A.; Suhara, Y.; Takayanagi, H.; Fujishima, T.; Kurihara, M.; Takayama, H. *Org. Lett.* **2000**, *2*, 2619; (b) Saito, N.; Suhara, Y.; Kurihara, M.; Fujishima, T.; Honzawa, S.; Takayanagi, H.; Kozono, T.; Matsumoto, M.; Ohmori, M.; Miyata, N.; Takayama, H.; Kittaka, A. *J. Org. Chem.* **2004**, *69*, 7463; (c) Suhara, Y.; Kittaka, A.; Kishimoto, S.; Calverley, M. J.; Fujishima, T.; Saito, N.; Sugiura, T.; Waku, K.; Takayama, H. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3255; (d) Saito, N.; Masuda, M.; Matsunaga, T.; Saito, H.; Anzai, M.; Takenouchi, K.; Miura, D.; Ishizuka, S.; Takimoto-Kamimura, M.; Kittaka, A. *Tetrahedron* **2004**, *60*, 7951; (e) Hourai, S.; Fujishima, T.; Kittaka, A.; Suhara, Y.; Takayama, H.; Rochel, N.; Moras, D. *J. Med. Chem.* **2006**, *49*, 5199.
11. For our review articles, see: (a) Saito, N.; Honzawa, S.; Kittaka, A. *Curr. Top. Med. Chem.* **2006**, *6*, 1273; (b) Saito, N.; Kittaka, A. *ChemBioChem* **2006**, *7*, 1478; (c) Saito, N.; Kittaka, A. *J. Synth. Org. Chem. Jpn.* **2007**, *65*, 947.
12. Hatakeyama, S.; Irie, H.; Shintani, T.; Noguchi, Y.; Yamada, H.; Nishizawa, M. *Tetrahedron* **1994**, *50*, 13369.
13. Data for **14-epi-pre-1a**: $[\alpha]_D^{22} -11.64$ (c 1.61, CHCl_3); UV (EtOH) λ_{max} 252.5 nm, λ_{min} 229.5 nm; IR (neat) 3374, 2961, 1456, 1375 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 0.84 (s, 3H), 0.87 (d, $J = 6.4$ Hz, 3H), 0.99–1.98 (m, 34H), 2.50 (dd, $J = 16.8$, 5.1 Hz, 1H), 3.65 (dt, $J = 10.0$, 5.5 Hz, 1H), 3.87 (d, $J = 2.0$ Hz, 1H), 5.58 (d, $J = 3.4$ Hz, 1H), 5.71 (d, $J = 13.1$ Hz, 1H), 5.75 (d, $J = 13.1$ Hz, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ 12.8, 17.6, 19.6, 20.9, 21.8, 22.9, 28.6, 29.1, 29.5, 29.6, 33.9, 34.1, 35.7, 38.4, 41.1, 41.7, 44.3, 51.0, 51.8, 68.2, 71.1, 74.5, 125.6, 127.4, 130.4, 130.8, 132.7, 138.7; EI-LRMS m/z 430 (M^+), 412, 396, 374, 350, 169; EI-HRMS calcd for $\text{C}_{28}\text{H}_{46}\text{O}_3$ (M^+) 430.3446, found 430.3430. For spectroscopic data of **14-epi-pre-1b~1f**, see: [Supplementary data](#).
14. For experimental details of testing binding affinity for the chick intestinal VDR and osteocalcin promoter transactivation activity, see: [Supplementary data](#).