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We synthesized and isolated 2a-substituted analogs of 14-epi-previtamin D3 after thermal isomerization
at 80 °C for the first time. The VDR binding affinity and transactivation activity of osteocalcin promoter in
HOS cells were evaluated, and the 2a-methyl-substituted analog was found to have greater genomic
activity than 14-epi-previtamin Ds.

© 2009 Elsevier Ltd. All rights reserved.

Vitamin D3 is present in thermal equilibrium with previtamin
D3 via [1,7]-sigmatropic rearrangement. In this equilibrium, the
6-s-trans isomer, that is, the vitamin D form (A), is more stable
and major than the 6-cis isomer of the previtamin D form (B)
(Scheme 1). Active vitamin D3, 10,25(0OH),D3 (1), which is the bio-
logically most active metabolite of vitamin D3, contains 5-10% of
its previtamin D form, 10,25(OH),preDs (pre-1) at 37 °C in similar
equilibrium.! Most scientists have focused on the analogs of the
major vitamin D form for therapeutic evaluation rather than the

vitamin D3: R = H (140-H)
1: R = OH, 10,,25(0OH),D3 (140-H, 10.,25-dihydroxyvitamin D3)
14-epi-1: R = OH, 14-epi-10,,25(0OH),D3 (14p-H)

previtamin D form, because previtamin Ds is easily transformed
to vitamin D3 through thermal equilibrium and is almost impossi-
ble to isolate in the pure form.! While 1 is a ligand of the nucleic
receptor (vitamin D receptor, VDR), regulates gene transcription,
and exhibits various biological responses as a hormone, pre-1 is
believed to be a weak ligand of VDR and a poor activator of the
above genomic actions;> however, pre-1 has been studied as a li-
gand of a putative membrane vitamin D receptor for a long time,*
and it is well-known that pre-1 causes various biological rapid

previtamin D;3: R = H (140-H)
pre-1: R = OH, 10,,25(0OH),preD3 (140-H)
14-epi-pre-1: R = OH, 14-epi-10,25(0OH),preD5 (14B-H)

Scheme 1. Equilibrium between vitamin D3 and previtamin Ds.
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14-epi-pre-1a: R = Me
14-epi-pre-1b : R = (CH,)30H
14-epi-pre-1c : R = O(CH;)30H
14-epi-pre-1d : R = Bu
14-epi-pre-1e : R = Ph
14-epi-pre-1f : R = Bn
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Scheme 2. Retrosynthetic analysis of 2a-substituted 14-epi-10,25(0H),preDs.

responses, for example, stimulation of intestinal Ca®* transport
(transcaltachia),® activation of PKC® and MAP’ kinases, and so on,
which are called non-genomic actions.

Okamura et al. reported that the thermal equilibrium ratio be-
tween vitamin D form (A) and previtamin D form (B) at 80 °C
was reversed by epimerizing the CD-ring bridgehead hydrogen of
C14, that is, 14-epi-10,25(0OH),preD; (14-epi-pre-1) was major
and dominant to 14-epi-10,25(0H),D3 (14-epi-1).2 Since it re-
quires a high temperature (80 °C) to reach thermal equilibrium,
14-epi-pre-1 is expected to be isolated stable at room tempera-
ture. Using this reverse equilibrium, we focused on the synthesis
of the 14-epi-pre-1 analogs with A-ring modification, and aimed
to identify the more detailed biological properties and potential
as therapeutic agents of the previtamin D3 skeleton.

14-epi-pre-1 could be prepared from 14-epi-1 by thermal
isomerization, so we planed to synthesize 14-epi-1 analogs as tem-

NaOMe

MeOH

conv. y. 93%
4:2=12:1)

Scheme 3. Synthesis of the CD-ring fragment.

porary first targets. This strategy would help us to understand the
equilibrium between vitamin D3 and previtamin Ds. The 14-epi-1
analogs were divided into two fragments, which were CD-ring
and A-ring fragments (Scheme 2). The CD-ring fragment could be
obtained by epimerization at H14 in Grundmann'’s ketone deriva-
tive, which was derived from vitamin Ds.° The A-ring fragment
could be synthesized from methyl o-p-glucoside, and we could
introduce various alkyl groups at the 2o-position as we reported
previously.'® We found that 2o-alkyl and 2o-(m-hydroxyalkyl)
substitution afforded great improvements VDR binding affinity
and the subsequent genomic actions.!' We therefore decided to
prepare analogs with 2a-substitutions (14-epi-pre-1a~1f) in this
Letter.

The CD-ring fragment (2) was synthesized from the known ke-
tone of TES-protected 25-hydroxy Grundmann’s ketone (4).°
According to the literature, epimerization of H14 was successfully
conducted by NaOMe with recovery of the starting material
(Scheme 3).2

A-ring fragments (8a-f) were prepared from the known
enynes 3a-f (Scheme 4),1°*-¢ which reacted with n-BuLi and then
(CH,0), to give alcohols 5a-f in good to excellent yields. Then,
hydroalumination and subsequent iodination of the alkyne gave
the vinyl iodides 6a-f. Next, cyclization by Heck reaction pro-
ceeded smoothly to afford a six-membered A-ring,'? whose
hydroxyls were easily transformed into phosphine oxides in three

OH
= OH
= 3
n-BuLi, -78 °C = 1) Red-Al L
TBSO" OTBS o . P ——— =
A (CH0), TBSO" OTBS 2)15,-78°C
R TBSO" OTBS
3a:R=Me R
3b : R = (CH,)30TBS 5a:R=Mey.91% 6a:R=Me Y
: . o :R= Y. 73%
3¢ : R = O(CH,);0TBS 5b : R = (CH,);0TBS y. 92% 6b:R= (CHZ)SO'I:)BS y. 70%
3d:R=Bu 5¢ : R = O(CH,);0TBS y. 89% 6¢ : R = O(CH,);0TBS y. 75%
3e:R=Ph 5d:R=Buy.91% 6d:R=Buy.75%
3f:R=Bn 5e:R=Phy.81% 6e:R=Phy.67%
5f:R=Bny.94% 6f:R=Bny.76%
P(O)Ph,
OH
1) NCS, S(CHy), .
PA(PPhy)s 2) PHPh,, n-BuLi, -78 °C
EtsN, reflux . 9 H:0; TBSO" OTBS
TBSO' OTBS R
R

7a:R=Mey.93%

7b : R = (CH,);0TBS y. 89%
7¢: R =0(CH,);0TBS y. 82%
7d:R=Buy.93%

7e :R=Phy.99%

7f :R=Bny.92%

8a:R=Mey.77%

8b : R = (CH,)30TBS y. 74%
8c : R = O(CH,)3;0TBS y. 76%
8d:R=Buy.76%

8e:R =Phy.39%

8f :R=Bny.83%

Scheme 4. Synthesis of the A-ring fragments.
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TBAF or HF/Py
THF

9a: R = Mey. 44%

9b: R = (CH,);0TBS y. 52%
9c: R = O(CH,)30TBS v. 55%
9d: R=Buy. 24%
9e:R=Phy.9%

9f: R=Bny.59%

14-epi-pre-1a: R = Me y. 39%*
14-epi-pre-1b: R = (CH,)30H y. 41%*
14-epi-pre-1c: R = O(CH,)3;0H y. 42%*
14-epi-pre-1d: R = Bu y. 96%
14-epi-pre-1e: R =Phy.81%
14-epi-pre-1f: R = Bn y. 92%

*Deprotection was conducted by HF/Py.

Scheme 5. Coupling reaction and synthesis of 2a-substituted 14-epi-10,25(OH),preDs.

steps to give 8a—f, respectively.® As above, we were able to prepare
A-ring fragments in good overall yield.

Since both fragments were available, we tried the coupling
reaction under basic conditions using n-BuLi (Scheme 5).8 Small
excess amounts of the A-ring fragment worked well and we ob-
tained the coupled products 9a-f, although some were obtained
in low yield. The silyl protected 14-epi-1 analogs (9a-f) tend not
to lead to isomerization to their previtamin D form, probably be-
cause TBS groups at the A-ring should show steric hindrance to
reaching the transition state of the [1,7]-sigmatropic hydrogen
shift existing between the vitamin D form and previtamin D form.
Then, all silyl groups in 9a-f were removed in one step with excess
TBAF or HF/pyridine, and most of the deprotected compounds re-
mained in the vitamin D form (1a-f), and only small amounts of
the previtamin D form (pre-l1a~1f) were produced under these
reaction conditions. Isomerization was therefore examined at
80 °C in benzene, and fortunately the portions of the desired 14-
epi-pre-1a~1f increased, and most vitamin D forms were con-
verted into the previtamin D form easily in less than two hours.
After thermal equilibrium had been established, the ratio of the
compounds was about 5/95 (vitamin D/previtamin D) based on
'H NMR studies. Using HPLC, the mixture of both forms was sepa-
rated, and pure 14-epi-pre-1a~1f were used for further biological
studies.”

The VDR binding affinity and the osteocalcin promoter transac-
tivation activity of the new compounds were evaluated using the
chick intestinal VDR and HOS cells, respectively.'* The results are
summarized in Table 1 in comparison with the natural hormone
1 and 14-epi-pre-1, which was synthesized in a similar manner
in our laboratory. The new compounds showed lower activity than
the natural hormone 1; however, some showed higher activity
than 14-epi-10,25(OH),preD; (14-epi-pre-1). In particular, 14-
epi-pre-1a, the 2o-methyl substituted analog indicated a remark-
able increase in VDR binding affinity and transactivation activity. It
is worth noting that 14-epi-pre-1 analogs gain genomic activity,

Table 1
Relative binding affinity for chick intestinal VDR and osteocalcin promoter transac-
tivation activity in HOS cells of 2a-substituted 14-epi-1a,25(0OH),preD;'*

Compound VDR? Osteocalcin transactivation
activity (EDsg (nM))
1 100 0.03
14-epi-pre-1 0.5 0.46
14-epi-pre-1a 8.4 0.12
14-epi-pre-1b 1.4 0.69
14-epi-pre-1c 0.17 0.95
14-epi-pre-1d 0.27 5.77
14-epi-pre-le <0.03 0.88
14-epi-pre-1f 0.03 30.2

and 2o-substitution on the A-ring seems to have great effects on
the biological actions of the previtamin D form.

In conclusion, we synthesized the 2a-substituted analogs of 14-
epi-pre-1 for the first time and were able to isolate these new ana-
logs (14-epi-prela~1f) after thermal isomerization at 80 °C. Using
them, we evaluated the VDR binding affinity and transactivation
activity of osteocalcin promoter in HOS cells, among which, the
2a-methyl-substituted analog (14-epi-pre-1a) was found to have
greater genomic activity than 14-epi-pre-1. Further studies of
the action mechanisms of 14-epi-pre-1 analogs as well as studies
on non-genomic activity are currently in progress in our
laboratory.
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Supplementary data

Supplementary data (spectroscopic data of 14-epi-pre-1b~1f
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